doi:10.19306/j. cnki. 2095-8110. 2023. 04. 011

不同尺度范围的监测网对星基 增强服务性能的影响分析

张永兴1,王 乐1,谢 威1,王紫薇1,田耀召2,李孟园1

(1.长安大学地质工程与测绘学院,西安 710054;2.中国电子科技集团公司第五十四研究所,石家庄 050081)

摘 要:区域监测站提供的星基增强完好性监测服务在民用航空等生命安全领域发挥着重要作 用。为了分析利用不同尺度监测网估计的完好性信息对用户服务性能影响,使用等效钟差方法分 别实现三种不同尺度的监测网完好性参数估计,并进行增强定位验证。从增强卫星数目、用户测 距误差、定位精度和保护级包络特性方面研究不同尺度的监测网对用户服务性能评估的影响,结 果表明:与小尺度和中等尺度区域相比,大尺度区域增强卫星数目分别增加了 50.7%、33.7%。与 广播星历伪距单点定位相比,基于小、中等和大尺度区域监测网估计的改正数增强定位在水平方 向定位精度分别提升了 33.08%、33.59%和 32.54%,垂直方向定位精度分别提升了 36.56%、 41.07%和 43.86%。三种尺度估计的平均用户测距误差均优于 0.3 m,保护级水平对定位误差的 包络均能达到 95%。研究成果可为区域星基增强监测网的选择提供理论支撑和应用依据。 关键词:星基增强;等效钟差;不同尺度;用户测距误差;定位精度;保护级水平 中图分类号:VN967.1 文献标志码:A 文章编号:2095-8110(2023)04-0112-11

Analysis of the impact of station networks with different scales on the service performance of satellite-based augmentation

ZHANG Yongxing1, WANG Le1, XIE Wei1, WANG Ziwei1, TIAN Yaozhao2, LI Mengyuan1

(1. School of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China;

2. The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China)

Abstract: Satellite-based augmentation integrity monitoring services provided by regional stations plays an important role in civil aviation and other life safety fields. To analyze the impact of integrity information estimated based on different scales of station networks on the service performance of users, the integrity parameter estimation of three different scales of station networks are achieved using the equivalent clock method, and the validation of the augmented positioning is performed. The impact of station networks with different scales on user service performance evaluation is studied in terms of augmented satellite number, user range error, positioning accuracy and protection level envelope characteristics. The results show that compared with small scale and medium scale regions, the number of augmented satellites in large scale regions increases by 50.7% and 33.7%, respectively. Compared with the pseudorange single point positioning using broadcast

基金项目:国家自然科学基金(41731066);国家重点研发计划(2018YFC1505105);中央高校领军人才项目(300102261302) 作者简介:张永兴(1998-),女,硕士研究生,主要从事星基增强完好性方面的研究。

收稿日期: 2022-11-06;修订日期: 2022-12-01

通信作者:王乐(1986-),男,博士,高级工程师,主要从事GNSS卫星精密定轨定位方面的研究。

ephemeris, the positioning accuracy of the augmented positioning based on the correction estimated by the small, medium and large scale regional monitoring network is improved by 33.08%, 33.59% and 32.54% in the horizontal direction, and 36.56%, 41.07% and 43.86% in the vertical direction, respectively. The average user range error estimated by the three scales is better than 0.3 m, and the envelope of the positioning error can reach 95% at the protection level. The research results can provide theoretical support and application basis for the selection of regional satellite-based augmentation monitoring network.

Key words: Satellite-based augmentation; Equivalent clock; Different scales; User range error; Positioning accuracy; Protection level

0 引言

星基增强系统(satellite-based augmentation system,SBAS)作为全球导航卫星系统(global navigation satellite system, GNSS)的一种辅助,可有效提升 GNSS 的定位精度和可靠性等,具备高精度、高效率、 较低成本以及广域覆盖等优点,能为民用航空、航运 等特殊领域提供更低成本、更高可用性的导航功能, 带来巨大的经济和社会效益^[1]。SBAS 由地面控制 站、空间星座、运行维护站和用户等4个部分组成,地 面控制站指分布在一定区域范围的地面监测站,空间 星座部分包括地球静止轨道(geostationary Earth orbit,GEO)卫星和增强卫星。利用地面控制站解算 增强卫星的轨道误差、钟差误差、电离层延迟等多种 修正信息和完好性信息,然后注入到 GEO 卫星,通过 GEO 卫星播发给地面用户,用户同时接收 GNSS 和 SBAS 改正数信息,提高定位精度并判断导航系统的 可靠性。

一些国家或地区建立了各自的星基增强系统,如 美国的广域增强系统(wide area augmentation system, WAAS)^[2]、欧盟地球静止导航重叠服务系统(European geostationary navigation overlay service, EGNOS)^[3]、日 本的多功能卫星星基增强系统(multi-functional satellite augmentation system, MSAS)^[4]、印度的 GPS 辅 助型静地轨道增强系统(GPS-aided GEO augmented navigation, GAGAN)^[5]和我国的北斗星基增强系 统(BeiDou satellite-based augmentation system, BDSBAS)。国内外学者对星基增强系统处理算法 及评估体系展开了大量研究。曹月玲等人介绍了 监测 BDS-3 完整性的方法,在 BDS-3 卫星在轨测试 阶段,利用星载自主监测系统和地面控制部分的实 际数据分析了初始完整性性能^[6]。陈俊平等人介 绍了 BDSBAS 及广域差分改正数算法,采用 10 个

测站 6 天的相位平滑伪距和相位观测数据,初步评 估了 BDSBAS 性能提升后的用户定位性能^[7]。王 岳辰等人基于 BDSBAS 实测信号,开展了接收机的 性能测试,评估了接收机在不同定位服务模式下的 精度、完好性、连续性和可用性情况^[8]。陈谷仓等人 仿真计算了 BDSBAS 不同航空完好性服务等级对 北斗系统等效伪距测量误差、卫星故障概率、虚警 概率等方面性能的要求^[9]。PU.J 等人从数据完整 率、载噪比和多路径误差三个角度对北斗全球系统 GEO-1 卫星在频点 BDSBAS-B1C 和 BDSBAS-B2a 上的信号质量进行评估,并分别与 GPS 卫星在 L1CA 和 L5 频点上完成对比分析^[10]。邵搏围绕衡 量指标、查找方法和监测站数量3个方面的内容,开 展监测站布局策略的研究,给出了一种中国及周边 区域的24个监测站的布局,并从监测站覆盖深度、 用户定位精度、用户保护级和系统可用性几方面对 该监测站布局的性能进行了分析[11]。然而,当前的 研究均是基于单一尺度的监测站估计改正数,对于 不同尺度鲜有涉及。研究不同尺度范围的监测站 在卫星、用户服务性能等方面存在的差异,可以为 区域增强和全球增强的监测站布局提供一定的理 论依据。

1 轨道/钟差改正数解算和性能评估算法

1.1 轨道/钟差改正数解算模型

监测站 *i* 和卫星 *j* 之间的原始伪距观测量 ρ_i^i 表示为

 $\boldsymbol{\rho}_{i}^{j} = \boldsymbol{d}_{i}^{j} + \boldsymbol{T}_{i}^{j} + \boldsymbol{b}_{i} - \boldsymbol{B}^{j} + \boldsymbol{I}_{i}^{j} + \boldsymbol{v}_{i}^{j} \qquad (1)$

式中, d_i 为监测站i和卫星j之间的几何距离; T_i 为倾斜对流层延迟; b_i 为监测站i的接收机钟差; B^j 为卫星钟差; I_i 为倾斜电离层延迟; v_i 为观测噪声和多路径效应等。

对双频伪距观测值采用无电离层组合的方式削

弱一阶电离层延迟的影响。采用模型修改对流层延 迟误差。卫星轨道和钟差均采用广播星历进行计算, 由于广播星历是通过预报获得的,其精度较差。经过 误差改正后,伪距残差中包含接收机钟差、卫星轨道 和钟差误差以及其他残余误差,可以表示为

 $\Delta \boldsymbol{\rho}_{i}^{j} = \Delta \boldsymbol{R}^{j^{\mathrm{T}}} \cdot \boldsymbol{l}_{i}^{j} + \boldsymbol{b}_{i} + \Delta \boldsymbol{B}^{j} + \boldsymbol{v}_{\omega_{i}^{j}} \qquad (2)$ $\boldsymbol{\mathrm{d}} \mathbf{r} : \Delta \boldsymbol{\rho}_{i}^{j} \, \boldsymbol{\mathrm{b}} \boldsymbol{\mathrm{b}} \boldsymbol{\mathrm{b}} \boldsymbol{\mathrm{b}} \boldsymbol{\mathrm{i}} \, \boldsymbol{\mathrm{a}} \, \boldsymbol{\mathrm{D}} \boldsymbol{\mathrm{E}} \, \boldsymbol{\mathrm{j}} \, \boldsymbol{\mathrm{c}} \, \boldsymbol{\mathrm{i}} \, \boldsymbol{\mathrm{b}} \, \boldsymbol{\mathrm{c}} \, \boldsymbol{\mathrm{b}} \,$

1.1.1 站间时钟同步

通过基准站时钟偏差估计、站间时钟偏差解算 和伪距残差同步来实现站间时钟同步,可以消除式 (2)中接收机钟差的影响,因此,认为式(2)中只包 含卫星轨道和钟差误差。基于此可以解算出轨道 和钟差误差。

基准站时钟偏差解算是为了计算各个测站与基 准站之间的钟差。选定监测站 m 作为时钟同步基准 站,假设该监测站可以观测到 N 个卫星,将式(2) 中 的 $\Delta R^{j^{T}} \cdot l_m^j + \Delta B^j$ 视为随机误差,其方差为 URA_m^j ,由 最小二乘法可得 b_m 的估计值 \hat{b}_m 及其估计精度 $\sigma_{b_m}^2$

$$\hat{\boldsymbol{b}}_{m} = \left[\sum_{j=1}^{N} \frac{\Delta \boldsymbol{\rho}_{m}^{j}}{\sigma_{\Delta \rho_{i}^{j}}^{2} + (URA_{m}^{j})^{2}}\right] \sigma_{b_{m}}^{2}$$
(3)

$$\sigma_{b_m}^2 = \left[\sum_{j=1}^{N} \frac{1}{\sigma_{\Delta \phi_i^j}^2 + (URA_m^j)^2}\right]^{-1}$$
(4)

站间时钟偏差解算可以将监测站接收机时钟 与基准站时钟同步。其余测站同基准站进行星间 差分,消除监测站接收机时钟之间的偏差,将 $\Delta \rho_m^i$ 与 Δp^i 做差可得

$$\Delta \boldsymbol{\rho}_{i,m}^{j} = \Delta \boldsymbol{\rho}_{i}^{j} - \Delta \boldsymbol{\rho}_{m}^{j} = \Delta \boldsymbol{R}^{j^{\mathrm{T}}} \cdot (\boldsymbol{l}_{i}^{j} - \boldsymbol{l}_{m}^{j}) + (5)$$
$$\boldsymbol{b}_{i,m} + \boldsymbol{v}_{\Delta \boldsymbol{\rho}_{i}^{j}, \Delta \boldsymbol{\rho}_{m}^{j}}$$

其中, $\boldsymbol{b}_{i,m} = \boldsymbol{b}_i - \boldsymbol{b}_m$, $\boldsymbol{v}_{\Delta \boldsymbol{\rho}_i^j, \Delta \boldsymbol{\rho}_m^j}$ 的方差为 $\sigma_{\Delta \boldsymbol{\rho}_i^j, \Delta \boldsymbol{\rho}_m^j}^2 = \sigma_{\Delta \boldsymbol{\rho}_i^j}^2 + \sigma_{\Delta \boldsymbol{\rho}_m^j}^2$ 。

由于 ΔR 很小(一般为 2 m 左右),且地面监测 站间的距离相对监测站到卫星的距离非常小,所以 ($l_{i}^{2} - l_{m}^{2}$)的量级非常小可以忽略不计,因此,式(5) 可简化为

$$\Delta \boldsymbol{\rho}_{i,m}^{j} = \boldsymbol{b}_{i,m} + \boldsymbol{v}_{\Delta \rho_{i}^{j}, \Delta \rho_{m}^{j}}$$
(6)

对 $\{\Delta \boldsymbol{\rho}_{i,m}^{j}\}_{j=1}^{N_{m}}$ 取平均,可得 $\hat{\boldsymbol{b}}_{i,m}$ 的估计值,即

$$\hat{\boldsymbol{b}}_{i,m} = \frac{1}{N_m} \sum_{j=1}^{N_m} \Delta \boldsymbol{\rho}_{i,m}^j \tag{7}$$

$$\sigma_{\tilde{b}_{i,m}}^{2} = \frac{1}{N_{m}^{2}} \sum_{j=1}^{N_{m}} \sigma_{\Delta \rho_{i}^{j}, \Delta \rho_{m}^{j}}^{2}$$

$$\tag{8}$$

式中, N_m 为基准站与其余测站共视卫星数量。

$$\Delta \boldsymbol{\rho}_{i}^{j} = \Delta \boldsymbol{R}^{j^{T}} \cdot \boldsymbol{l}_{i}^{j} + \Delta \boldsymbol{B}^{j} + \boldsymbol{v}_{\Delta \boldsymbol{\rho}_{i}^{j}}$$
(9)

其中,
$$\mathbf{v}_{\Delta \phi_i^j}$$
的方差为
 $\sigma_{\Delta \phi_i^j}^2 = \sigma_{\Delta \phi_i^j}^2 + \sigma_h^2 + \sigma_h^2$

1.1.2 等效钟差模型

经过时钟同步后的伪距残差仅含轨道误差和钟 差误差。距离测量中的卫星钟差误差与方向无关,而 卫星轨道误差对不同用户视线方向投影的影响主要 为卫星轨道径向方向。超过 95%的轨道径向误差会 被钟差参数吸收。因此轨道误差对用户定位的影响 主要是由于不同视向上观测改正的差值。轨道径向 误差在不同天底角引起的测距误差占轨道径向误差 的比例为1.2%~3.1%,轨道径向误差在不同方向造 成的测距误差在厘米量级,其影响可忽略^[12]。

把包含了卫星轨道的径向误差的改正以及卫 星钟差误差的改正称为等效钟差,等效钟差模型忽 略了轨道在垂直于径向方向的影响。以 pcor^j 播 发,可以表示为

$$pcor^{j} = \boldsymbol{\delta}_{\text{orb } j} + \boldsymbol{\delta}_{\text{satclk } j}$$
(10)

式中, *pcorⁱ*为卫星*j*的等效钟差; δ_{orb_j} 为卫星*j*的 轨道径向投影误差; δ_{satelk_j} 为卫星*j*的钟差误差。 基于式(9)和(10),伪距残差观测方程进一步表示为

$$\Delta \tilde{\boldsymbol{\rho}}_{i}^{j} = \boldsymbol{pcor}^{j} + \boldsymbol{\varepsilon}_{i}^{j} \qquad (11)$$

根据式(11)求解卫星 *j* 的等效钟差,假设卫星 *j* 共视监测站个数为*M*个,则理论上*M*≥1时,便可 求解等效钟差。采用最小二乘法设计矩阵如下

$$\boldsymbol{H}_{1} = \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}_{M \times 1}$$
(12)

则卫星 ; 的等效钟差估计值可以表示为

$$pcor^{j} = \frac{\sum_{i=1}^{i=M} \Delta \bar{\boldsymbol{\rho}}_{i}^{j}}{M}$$
(13)

伪距残差扣除等效钟差改正数后,使用卡尔曼 滤波进一步计算卫星轨道改正数。

1.2 性能评估模型

式中, ε ;为伪距观测噪声。

1.2.1 URE

用户测距误差(user range error, URE)是卫星 轨道误差与钟差误差在用户到卫星视线的投影,其 反映了卫星的系统性能以及空间段与控制段对精 度的影响^[13]。为了进一步反映轨道/钟差改正数的 不确定度,将卫星轨道和钟差误差在用户测距误差 方向进行投影,即可获得 URE。将基于单星多监测 站的测距残差按各监测站求取均方根误差(root mean square,RMS)值,并取均值作为该星的 URE 评估值。测距残差采用伪距观测方程与接收机原 始观测量进行计算,表示为

 $URE = \boldsymbol{\rho}_{i}^{j} - \boldsymbol{d}_{i}^{j} - \boldsymbol{T}_{i}^{j} - \boldsymbol{b}_{i} + \boldsymbol{B}^{j} - \boldsymbol{I}_{i}^{j} - (14)$ $\boldsymbol{v}_{i}^{j} - \boldsymbol{R}^{j^{\mathrm{T}}} \boldsymbol{\Delta} \boldsymbol{l}_{i}^{j} - \boldsymbol{pcor}^{j}$

式中, **R**^{*i*} 表示卫星 *j* 轨道改正数。 1.2.2 定位精度

定位精度表示用户定位解算得到的定位坐标 与真实值之间的精确程度。进行伪距单点定位和 增强定位实验时,将定位误差转换成 E,N 和 U 方 向的定位精度,得到水平精度和垂直精度^[14]。

1.2.3 保护级水平

通过 SBAS 解算得到的完好性信息(如 UDRE) 来计算保护级^[15](protection level, PL),包括水平保 护级(horizontal PL, HPL)和垂直保护级(vertical PL, VPL)。具体计算过程如下

非精密进近下的水平保护水平为

 $HPL_{NPA} = K_{H,NPA} \times d_{major}$ (15) 精密进近下的水平保护水平为

$$HPL_{PA} = K_{\rm H,PA} \times d_{\rm major} \tag{16}$$

$$VPL = K_{\rm V, PA} \times d_{\rm U} \tag{17}$$

式(15)至(17)中, K_{H,NPA} 表示非精密进近模式 下的水平保护水平系数,数值固定为 6.18; K_{H,PA}, K_{V,PA}分别代表精密进近模式下的水平和垂直保护水平系数,数值分别固定为 6.0 和 5.33; d_{U}^{2} 表示超出天向真实误差模型的分布方差; d_{major} 代表不确定误差椭圆的半长轴^[16]。

如果当前时刻用户定位误差大于保护级,则发 生完好性风险事件。当用户定位误差小于保护级, 保护级小于相应航段所制订的水平/垂直告警门限 (horizontal alert limit, HAL/vertical alert limit, VAL),则系统可用,不发生漏警情况。

1.3 数据处理流程图

完好性数据处理解算流程如图1所示。首先, 对原始观测数据进行数据预处理。通过伪距粗差 和周跳探测剔除异常的伪距观测值和载波观测值, 然后进行双频载波平滑伪距,削弱多路径误差和观 测噪声带来的影响,并进行一系列误差改正,包括 卫星轨道/钟差误差、相对论效应、时间群延迟、差 分码偏差、对流层延迟改正等。然后进行伪距残差 解算处理。将卫星轨道/钟差误差、对流层延迟估 计偏差等公共误差从原始伪距观测值扣除后,可得 到伪距残差,利用卡方检验对伪距残差进行数据质 量控制,对质量控制后的伪距残差作时钟同步处 理,将不同监测站的接收机时钟统一到同一个时间 基准上,消除其对解算卫星星历改正数的影响。将 站间时钟同步后的伪距残差与单位方向矢量等结 果参数作为输入量,进行卫星轨道/钟差改正数以 及完好性参数的解算。最后由用户端对解算得到 的增强信息进行服务性能评估。

Fig. 1 Flow chart of integrity data processing

2 实验处理与分析

2.1 数据与策略

选择欧洲区域的 MGEX 测站进行实验,综合考 虑 MGEX 的测站分布以及测站能接收到的信号进 行测站选取。不同尺度是指不同测站组成的监测 网的地理覆盖范围不同。小、中等和大尺度区域的 面积为十万、百万和千万平方千米级;面积分别约 为 50、300 和 1 800 万平方千米。每个区域均选择 17 个 MGEX 测站,其分布在图 2 中分别用红色、绿 色和蓝色表示。选用 2021 年第 101 天的 GPS 观测 数据估计其广播星历的卫星星历和星钟改正数。 观测数据频率为 GPS L1、L2,数据采样间隔为30 s, 截止高度角为 10°,地球自转、相对论效应等误差采 用模型改正。对流层模型采用 UNB3 进行改正,电 离层延迟采用双频无电离层改正。测站坐标固定 到 IGS 周解。

2.2 增强卫星数目分析

增强卫星数目是指每个历元可以被区域监测 站观测到并估计出改正数的卫星。基于三个不同 尺度的区域监测站进行星基增强改正数估计,不同 尺度在每个历元的增强卫星数目见图 3。

由图 3 可以看出,小尺度区域、中等尺度区域、 大尺度区域的增强卫星数目分别在 6~13、7~14 和 10~17 之间。三个区域的平均增强卫星数目分别 是 8.87、10.00 和 13.37。与小尺度区域和中等尺 度区域相比,大尺度区域分别增加了 50.7%、 33.7%。由于大尺度区域的范围较大,观测到的卫 星数目比小尺度区域和中等尺度区域多,进而估计 的增强卫星改正数也较多,这也有利于增加该区域 观测数据的冗余性。

Fig. 3 Time series map of augmented satellite number

2.3 轨道钟差改正数分析

利用等效钟差模型计算卫星的轨道钟差改正 数原则如下:当卫星出入境时,观测到该卫星的地 面监测站少于10个时,仅解算卫星钟差改正数;当 观测到该卫星的地面监测站大于等于10个时,先解 算该卫星的钟差改正数,再解算轨道改正数。该策 略可避免用户定位过程中增强卫星数量不够或异 常轨道改正数引起的定位性能下降的问题。利用 三种尺度监测网解算得到的G05卫星轨道钟差改 正数时间序列图见图4。

由图 4 可以看出:基于大尺度区域估计的卫星 轨道/钟差改正数的有效历元个数多于小尺度和中 等尺度区域。这是因为大尺度区域的覆盖面积更 大,卫星的观测弧段更长;此外,卫星的轨道/钟差 改正数变化与地面监测站观测的几何构型存在明 显关联,卫星轨道和钟差改正数在卫星出入境浮动 都较大,卫星虬入境以后数值变化都逐渐稳定。由 于大区域尺度的监测网增强卫星数目多于小区域 和中等区域尺度的监测网增强卫星数目多于小区域 和中等区域尺度的监测网,当卫星进入区域监测站 时,卫星轨道/钟差改正数的变化平稳;随着可观测 监测站变多,几何构型改善,卡尔曼滤波器的状态 逐渐稳定,利用大区域尺度的监测网估计得到的卫 星改正数比较稳定,收敛速度较快。

2.4 URE 评估

对年积日 101 天 GPS 双频各卫星的 URE 值进 行统计分析,其结果如图 5 所示。小尺度区域、中等 尺度区域、大尺度区域分别有 10,8 和 5 颗卫星的 URE 大于 0.3 m,其余卫星的 URE 均优于 0.3 m。 中等尺度和大尺度区域部分卫星 URE 较差,主

Fig. 4 Time series of ephemeris/clock correction of satellite G05

要是因为中等尺度和大尺度区域所覆盖的面积较 大,不同测站之间的大气误差差异较大,其无法被 接收机钟差全部吸收,这一部分误差被 URE 吸收, 导致 URE 较差。由于小尺度区域较小,不同测站 的大气误差的差异较小,大部分的大气误差被接收 钟差吸收,卫星 URE 较差主要是由增强卫星数目 较少和卫星改正数估计的收敛速度较慢导致的。

此外,分别统计了 3 个区域各卫星的 URE 值 的均值、标准差如表 1 所示。由于大尺度区域监测 网卫星对测站的几何构型较强,其 URE 较小,说明 轨道/钟差改正数增强效果稳定,增强修正过程消 除了部分轨道误差、钟差误差的影响。

表 1 卫星 URE 统计表

Satellite URF statistics

	140.1 540	chite OKE statistic	5 11
	小尺度区域	中等尺度区域	大尺度区域
均值	0.290	0.263	0.258
标准差	0.064	0.056	0.050

2.5 定位精度评估

Tah 1

利用 3 个不同尺度的区域监测站分别计算得到 的卫星轨道/钟差改正数,对广播星历进行修正,然 后进行定位实验。实验设计了两种方案,方案一: 基于广播星历的标准伪距单点定位;方案二:使用 估计的改正数对广播星历进行修正,然后进行伪距 单点定位。选择了 16 个未用于卫星星历星钟改正 数估计的 MGEX 测站用于定位实验,其分布如图 6 所示。进行单点定位实验时,观测数据采用 L1、L2 频点,测站坐标采用 IGS 周解作为参考值。

图 7 和图 8 分别为 WTZS 和 WTZZ 测站在 2021年,年积日 101 天的定位效果时间序列图,黑 色和红色分别代表标准伪距单点定位和增强后的

伪距定位误差,图中纵坐标分别代表东、北和天向 定位误差。

由图 7 和图 8 可以看出,使用标准伪距单点定 位方法时,其误差在一些历元相对较差,这是由 GPS广播星历每两小时更新一次引起的,卫星轨 道、钟差在更新前后出现阶变,无法平滑衔接。使 用改正数信息对广播星历进行增强后,定位 6误差序列波动变小且更平滑。WTZS测站增强定 位序列在东、北和天方向上的定位误差分别在 -0.5~0.5 m,-0.5~0.5 m,-1.0~1.0 m,少部 分历元的定位误差略差。WTZZ 测站利用小区域 和中等区域尺度监测网解算的改正数进行增强定 位的时间序列在东、北、天方向上的定位误差分别 在-0.5~1.0 m,-1.5~1.0 m,-2.0~2.0 m, 而利用大区域尺度监测网进行增强定位的时间序 列在东、北、天方向上的定位误差分别在-0.5~ 0.5 m,-1.0~1.0 m,1.0~1.0 m 变化。基于大 区域监测网估计的改正数计算定位时的误差序列 小于小尺度区域和中等尺度区域。

分别统计了 WTZS 和 WTZZ 测站定位精度的 RMS 如表 2 所示,可以看出,通过增强定位修正后 的定位结果相比于基本导航定位结果有了明显提 升。整体以大尺度区域增强定位效果最好。

此外,对所有测站的定位误差采用 95%分位数 的统计方式进行了精度统计,3 种方案下的 16 个测 站在单天的标准伪距单点定位和增强后的伪距单 点定位的水平和垂直定位精度如图 9 和图 10 所示。

Fig. 7 Comparison of augmented positioning effect of station WTZS

Fig. 8 Comparison of augmented positioning effect of station WTZZ

表 2 WTZZ、WTZS 测站定位精度 RMS 统计表

Tab. 2 RMS statistics of positioning accuracy of station WTZZ and WT	ΓZS
--	-----

		WTZZ 测站		WTZS 测站			
		小尺度	中等尺度	大尺度	小尺度	中等尺度	大尺度
东向	增强前	0.42	0.44	0.39	0.30	0.32	0.32
	增强后	0.29	0.36	0.25	0.15	0.14	0.15
北方	增强前	0.69	0.70	0.50	0.44	0.46	0.52
	增强后	0.44	0.51	0.27	0.23	0.21	0.20
天向	增强前	1.07	1.05	0.80	0.91	0.93	0.93
	增强后	0.57	0.80	0.43	0.53	0.41	0.40

Fig. 10 Histogram of vertical positioning accuracy comparison

m

由图 9 和图 10 可以看到,在标准伪距单点定位 的水平方向中,除 HUEG、SOFI 和 WTZZ 测站外,其 他测站均优于 1.5 m。增强定位的水平定位统计中, 所有测站定位的水平方向均优于 1.5 m。此外,使用 增强定位后,3 种尺度下估计的改正数对每个测站的 定位精度均有提升。就垂直方向而言,标准伪距单点 定位,除 SOFI 和 WROC 测站外,其他测站均优于 2.5 m。增强定位的垂直定位统计中,所有测站定位 的垂直方向均优于 2.5 m。此外,使用增强定位后,3 种尺度下估计的改正数对每个测站的定位精度均有 提升,且提升幅度要优于水平方向。有效降低了双频 定位误差较大样本点的频率分布。

同时对用于定位精度验证的 16 个测站,对其标准伪距单点定位/星基增强定位精度的 95%分位数 进行了平均统计,统计结果如表 3 所示。

表 3 测站平均定位精度统计表 Tab. 3 Statistical table of average positioning accuracy of station

		SPP/m	SBAS/m	提升率/%
小日座区楼	HPE	1.33	0.89	33.08
小八及区域	VPE	2.27	1.44	36.56
山谷日座区村	HPE	1.28	0.85	33.59
中守八度区域	VPE	2.24	1.32	41.07
十日座区楼	HPE	1.26	0.85	32.54
入八反区或	VPE	2.28	1.28	43.86

从表 3 可以看出,分别使用标准伪距单点定位 和增强后的伪距单点定位,小、中等和大尺度区域 的水平精度分别由 1.33 m 提升至 0.89 m、1.28 m 提升至 0.85 m、1.26 m 提升至 0.85 m,提升率分别 为 33.08%、33.59%、32.54%。垂直精度分别由 2.27 m 提升至 1.44 m、2.24 m 提升至 1.32 m、 2.28 m 提升至 1.28 m,提升率分别为 36.56%、 41.07%、43.86%。从提升效果来看,水平方向的 提升幅度均在 33%左右;垂直方向随着测站区域的 增大,定位精度提升幅度越大。这主要是因为监测 站尺度越大,观测到的卫星数目更多,对于平差时 的多余观测数更多,有利于平差数据处理。此外, 卫星轨道和钟差主要影响定位的天向,因此使用基 于改正数的增强定伪距单点定位时,天向的提升更 明显。

2.6 保护级包络特性分析

年积日 101 天 GPS 双频 IENG 测站定位误差/ 保护级时间序列图见图 11,蓝色、紫色、绿色和黄色 序列分别代表水平保护级、垂直保护级、水平误差 和垂直误差。第一、二、三列的图分别为利用小、中 等和大尺度区域监测站解算的改正数进行增强定 位的定位误差/保护级时间序列。水平/垂直告警 门限为一类垂直引导进近(APV-I)告警门限,其中 HAL 为 40 m,VAL 为 50 m^[11]。

Fig. 11 Station IENG positioning error/protection level time series diagram

由图 11 可以看出,测站的定位误差和保护级均 小于告警门限。水平/垂直保护级曲线均可对相应 的定位误差进行包络,表明在过程中未出现完好性 事件,完好性风险概率为 0.0%。但个别测站出现 少部分历元样本点的水平/垂直保护级水平未能对 相应的定位误差进行包络。统计了 16 个测站保护 级水平包络相应的定位误差的百分比,如表 4 所示。 就水平保护级而言,小、中等和大尺度区域全包络 的测站分别有 10,12 和 12 个。垂直保护级达到全 包络的测站分别有 10,11 和 11 个。

表 4 测站保护级水平/垂直包络百分比统计表

Tab. 4 Statistical table of the percentage of horizontal/vertical envelope of the protection level of the station	%
---	---

测站 ———	Σt	区域 1		区域 2		区域 3	
	HPE	VPE	HPE	VPE	HPE	VPE	
GRAC	100.00	100.00	100.00	100.00	100.00	100.00	
HUEG	99.79	99.79	99.79	99.79	99.86	99.79	
IENG	100.00	100.00	100.00	100.00	100.00	100.00	
JOZ2	98.73	99.09	99.97	99.58	99.86	99.97	
MOSE	100.00	100.00	100.00	100.00	100.00	100.00	
MARS	100.00	99.93	100.00	99.86	100.00	99.93	
MAT1	99.97	99.90	100.00	99.93	100.00	100.00	
MATG	99.79	99.69	99.83	100.00	99.90	99.83	
MEDI	100.00	100.00	99.86	100.00	100.00	100.00	
OP71	100.00	100.00	100.00	100.00	100.00	100.00	
PTBB	100.00	100.00	100.00	100.00	100.00	100.00	
SOFI	99.83	99.83	100.00	99.72	99.86	99.76	
UCAG	99.97	100.00	100.00	100.00	100.00	100.00	
WROC	100.00	100.00	100.00	100.00	100.00	100.00	
WTZS	100.00	100.00	100.00	100.00	100.00	100.00	
WTZZ	100.00	100.00	100.00	100.00	100.00	100.00	

3 结论

对3个不同尺度范围的区域监测网利用等效钟 差解算轨道/钟差改正数及完好性信息,并通过定 位对比实验探究监测站的布局对用户服务性能的 影响。实验结果表明:

1)大尺度参考网的增强卫星数目多于小、中等 尺度的参考网,平均增强卫星数目也以大尺度参考 网最多,与小、中等尺度的参考网相比,分别增加了 50.7%,33.7%。大部分 GPS 卫星的单天增强修正 后的 URE 精度优于 0.3 m,大尺度区域估计的 URE 均优于小区域和中等区域尺度。

2) 增强定位后,小、中等和大尺度区域的水平精 度分别由 1.33 m 提升至 0.89 m,1.28 m 提升至 0.85 m,1.26 m 提升至 0.85 m,提升率分别为 33.08%,33.59%,32.54%,垂直精度分别由 2.27 m 提升至 1.44 m,2.24 m 提升至 1.32 m,2.28 m 提 升至 1.28 m,提升率分别为 36.56%,41.07%, 43.86%。不同尺度监测网对水平增强定位精度提 升效果基本一致,大尺度监测网对垂直增强定位精 度提升效果最为明显。

3)用于定位验证的测站,其定位误差和保护级 均小于告警门限,大部分测站水平/垂直保护级曲 线均可对相应的定位误差进行包络,包络比为 100%,个别测站出现少部分历元样本点的水平/垂 直保护级水平未能对相应的定位误差进行包络,不 同尺度的参考网保护级水平相差不大。

以上结论表明,大尺度区域在卫星等效钟差估 计过程中监测站数量充足,数据冗余加速改正数估 计收敛,避免因缺少监测站数据无法进行解算而导 致卡尔曼滤波器不断地初始化,从用户性能验证来 看,大尺度区域估计的卫星改正数具有较高的准确 性和稳定性。

参考文献

[1] 邵搏,耿永超,丁群,等.国际星基增强系统综述[J].
 现代导航,2017,6(3):157-161.
 SHAO Bo, GENG Yongchao, DING Qun, et al. Sum-

marize of international satellite based augmentation system[J]. Modern Navigation, 2017, 6(3): 157-161(in Chinese).

- [2] JASON B. Wide area augmentation system (WAAS) program overview[R]. International Civil Aviation Organization: 35th Meeting of Satellite Based Augmentation System Interoperation Working Group, 2019.
- [3] European Satellite Services Provider (ESSP). EGNOS performance and LPV implementation status[R]. International Civil Aviation Organization: 30th Meeting of Satellite Based Augmentation System Interoperation Working Group, 2016.
- [4] MASASHI G. MSAS status[R]. Changsha: International Civil Aviation Organization: 30th Meeting of Satellite Based Augmentation System Interoperation Working Group, 2016.
- [5] Airports Authority of India (AAI). GPS aided GEO augmented navigation (GAGAN) [R]. International Civil Aviation Organization: 31th Meeting of Satellite Based Augmentation System Interoperation Working Group, 2016.
- [6] CAO Yueling, CHEN Junping, HU Xiaogong, et al. Design of BDS-3 integrity monitoring and preliminary analysis of its performance[J]. Advances in Space Research, 2020, 65(4): 1125-1138.
- [7] 陈俊平,胡一帆,张益泽,等.北斗星基增强系统性能 提升初步评估[J].同济大学学报(自然科学版), 2017,45(7):1075-1082.

CHEN Junping, HU Yifan, ZHANG Yize, et al. Preliminary evaluation of performance improvement of the big dipper based enhanced system[J]. Journal of Tongji University (Natural Science Edition),2017, 45(7):1075-1082(in Chinese).

[8] 王岳辰,林涛,沈军.北斗星基增强航空测试接收机 设计及服务性能评估[C]//中国卫星导航系统管理办 公室学术交流中心.第十二届中国卫星导航年会论 文集——S08测试评估技术.中国卫星导航学术年 会组委会,2021:6.

> WANG Yuechen, LIN Tao, SHEN Jun. Design and service performance evaluation of the big dipstar based enhanced aerial test receiver [C]// Academic Exchange Center of China Satellite Navigation System Administration Office. Proceedings of the 12th China

Satellite Navigation Conference -S08 Test and Evaluation Te-chnology. Organizing Committee of China Satellite Navigation Academic Conference, 202:6(in Chinese).

- [9] 陈谷仓,刘成,卢鋆.北斗星基增强系统服务等级与 系统性能分析[J]. 测绘科学,2021,46(1):42-48. CHEN Gucang, LIU Cheng, LU Jun. Service level and system performance analysis of big dipper based augmentation system[J]. Science of Surveying and Mapping,2021,46(1):42-48(in Chinese).
- [10] PU Junyu, LI Xiaojie, GUO Rui, et al. SBAS signal quality assessment of Beidou global system[J]. Progress in Astronomy, 2020, 38(4): 1000-8349.
- [11] 邵搏. 混合星座导航系统的用户差分距离误差完好 性关键技术研究[D]. 北京:北京航空航天大 学,2012.
 SHAO Bo. Research on integrity key technology of user differential range error for mixed constellation [D]. Beijing: Beihang University, 2012(in Chinese).
- [12] 陈俊平,杨赛男,周建华,等.综合伪距相位观测的北 斗导航系统广域差分模型[J].测绘学报,2017,46 (5):537-546.

CHEN Junping, YANG Sainan, ZHOU Jianhua, et al. A pseudo-range and phase combined SBAS differential correction model[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(5):537-546(in Chinese).

[13] 刘瑞华,董立尧,翟显.北斗卫星导航系统空间信号 用户测距误差计算方法研究[J].中国空间科学技术, 2017,37(4):41-48.

LIU Ruihua, DONG Liyao, ZHAI Xian. BDSBAS integrity protection level of analysis and research[J]. Aerospace Control,2020,38(4): 28-33(in Chinese).

- [14] 杨长金.不同模式下 GPS 定位精度分析[J]. 测绘与 空间地理信息,2022,45(9):139-142.
 YANG Changjin. Analysis of GPS positioning accuracy under different modes[J]. Geomatics & Spatial Information Technology,2022,45(9): 139-142(in Chinese).
- [15] 刘瑞华,席泽谱,吕吉方.BDSBAS完好性保护级分析 与研究[J].航天控制,2020,38(4):28-33.
 LIU Ruihua, XI Zepu, LYU Jifang. BDSBAS integrity protection level of analysis and research[J]. Aerospace Control,2020,38(4): 28-33(in Chinese).

(编辑:黄利华)