摘要: |
惯性导航系统参数长期重复性是影响导航性能的重要因素。批量生产的惯性导航系统在生产过程、运输存贮、标定等方面偶尔出现异常因素,导致个别产品性能参数长期重复性出现异常变化,进而影响惯导系统导航精度。为了快速挖掘异常数据,根据批次参数随时间变化特点,提出了一种多属性关联规则的惯性导航系统离群数据挖掘方法。通过对某型平台惯导系统参数长期重复性数据进行离群数据挖掘,结果表明对于参数长期重复性差导致的惯性导航系统性能异常现象, 使用所述方法可以有效检测出离群数据,并且能发现离群数据内部的关联关系。 |
关键词: 惯性导航系统 性能参数 重复性 离群数据 |
DOI: |
|
基金项目:国家安全重大基础项目(61388010404) |
|
Mining Method of Outlier Data for INS Performance Parameters Repeatability |
DANG Hong-tao,YI Guo-xing,WANG Chang-hong |
(Space Control and Inertial Technology Research Center Harbin institute of Technology;96117 Troops) |
Abstract: |
The long-term repeatability of calibration parameters is an important factor affecting the navigation performance in inertial navigation system (INS). For the mass-produced INS, the abnormal factors in the production, transport storage, manual calibration, etc., result in the abnormal changes of the parameters long-term repeatability of individual production’s performance, which will affect the navigation accuracy of INS. In order to detect the abnormal INS performance according to the batched parameter changes over time , a multi-attribute association rule based outlier data mining method was proposed. And the effectiveness of this method was verified by outlier data mining about the long-term parameters repeatability of a certain type platform INS system. |
Key words: Inertial navigation system Performance parameters Repeatability Outlier data |